Artificial Intelligence and Energy Poverty: Innovative Solutions

Jordi Cipriano, Gerard Mor, Jose Manuel Broto, Maite Sellart

October 15th, 2024

/ Introduction
How can Al contribute ?

IA delivers tools which help in making decisions:

To assess the vulnerability in urban areas at high detail level
 To support customized energy awareness services

/ Introduction

How do we assess energy poverty i urban areas?

- Through implementing a methodology based on AI that integrates:
 - Heterogenous and harmonised datasets in a common database
 - Weather modelling to upscale satellite resolution to microlocal
 - Energy performance modelling of the building stock
 - Key Performance Indicators (KPIs) of energy poverty at building level
 - Visualization of KPIs over a map web interface
 - A extreme events alarm app to address the most vulnerable buildings

/ Data

Identification and ingestion of multiple data sets

The process identifies and manages more than 100 data sources and thousands of data sets

Ingestion processes

Manually or periodically executed

Reading from webs, files, external databases or APIs

Implemented in Python scripts

Harmonisation processes

All ingested datasets go through a transformation process to align them to the **data ontology**

Store the data to the databases

Implemented in Python and using RML.io functionalities.

/ General architecture **Data architecture**

#EPAHConf24

CIMNE

EXCELENCIA SEVERO

/ Web semantics

An ontology to structure the data

/ AI Application in practise General concept: Knowledge graph

Building

- Cadastral data
- Multifamily buildings:
 - Census data
 - Monthly electricity consumption
 - Yearly gas consumption
- Touristic establishments
- Simultated energy demand
- Energy Performance Certificates
- Sample from EACs surveys/records

2. Data at census tract level

Census tract

- Socio-economic information
 about citizens
- Weather data
- Air quality data

3. Data at postal code level

Postal code

- Hourly electricity consumption by users type (industrial, services, residential)
- Mobility data

#EPAHConf24

7

/ AI applications in Climate Ready-BCN

General concept: Knowledge graph

#EPAHConf24

8

/ Modelling Multifaceted Models: Diverse Objectives

Buildings Energy demand model

Simulation of the energy demand of buildings in the urban area, based on archetypes, construction types, local weather data and user behaviour patterns.

Weather upscaling resolution model

Prediction model to upscale meteorological data from mesoscale to microscale.

Graph Neural Network

General model to predict indicators at building level based on real measurements, location of buildings and their relation among several aggregation layers.

#EPAHConf24

/ Modelling Building's energy demand modelling

#EPAHConf24

/ Modelling

Weather upscaling modelling

#EPAHConf24

/ Introduction

How do we support customized user awareness?

- Through a near-real-time interaction with the App "La meva Energia":
 - By providing specific information about the building quality of the user
 - By setting up an alarm system addressing extreme weather events (heat waves)

/ Modelling Alarms for extreme weather events

#EPAHConf24

EXCELENCL SEVERO

Artificial Intelligence and Energy Poverty: Innovative Solutions

Jordi Cipriano: cipriano@cimne.upc.edu

Thanks for your attention

